
CS193p

Spring 2016

Stanford CS193p
Developing Applications for iOS

Spring 2016

CS193p

Spring 2016

Today
Core Data

Object-Oriented Database

CS193p

Spring 2016

Core Data
Database

Sometimes you need to store large amounts of data or query it in a sophisticated manner.
But we still want it to be object-oriented!

Enter Core Data
Object-oriented database.
Very, very powerful framework in iOS (we will only be covering the absolute basics).

It’s a way of creating an object graph backed by a database
Usually backed by SQL (but also can do XML or just in memory).

How does it work?
Create a visual mapping (using Xcode tool) between database and objects.
Create and query for objects using object-oriented API.
Access the “columns in the database table” using vars on those objects.
Let’s get started by creating that visual map …

CS193p

Spring 2016

Get started with Core Data

by creating a Data Model

using New File …

CS193p

Spring 2016

This
template.This section. Don’t accidentally pick this one.

CS193p

Spring 2016

Name of the Data Model

(the visual map between classes

and database Entities).

CS193p

Spring 2016

The Data Model file.

Sort of like a storyboard for databases.

CS193p

Spring 2016

Click here to add an Entity …

The database lets us store things.

Let’s start by declaring one of the

things we want to store …

CS193p

Spring 2016

… then type its name here.

We’ll call this first Entity “Tweet”.

It will represent a tweet.

An Entity will appear in our code as an
NSManagedObject (or subclass thereof).

Entities are analogous to “classes”.

CS193p

Spring 2016

… attributes

(sort of like properties) …

Entities

Each Entity can have …

… and Fetched Properties

(but we’re not going to talk about them).

… and relationships

(essentially properties that point to

other objects in the database).

CS193p

Spring 2016

Now we will click here to add some Attributes.

We’ll start with the tweet’s text.

CS193p

Spring 2016

Notice that we have an error.

That’s because our Attribute needs a type.

We’ll call this Attribute “text”.

The Attribute’s name can be edited directly.

CS193p

Spring 2016

All Attributes are objects.

Numeric ones are NSNumber.

Boolean is also NSNumber.

Binary Data is NSData.

Date is NSDate.

String is String.

Don’t worry about Transformable. Attributes are accessed on our
NSManagedObjects via the methods

valueForKey and setValue(forKey:).

Or we’ll also see how we can

access Attributes as vars.

CS193p

Spring 2016

No more error!

CS193p

Spring 2016

Here are some more
Attributes.

You can see your Entities and Attributes in
graphical form by clicking here.

CS193p

Spring 2016

This is the same thing we were just
looking at, but in a graphical view.

CS193p

Spring 2016

Let’s add another Entity.

CS193p

Spring 2016

These can be dragged around
and positioned around the

center of the graph.

And set its name.

A graphical version will appear.

CS193p

Spring 2016

Attributes can be added in
the graphical editor too.

CS193p

Spring 2016

We can edit the name of an
attribute directly in this box …

… or by bringing up the

Attributes Inspector …

CS193p

Spring 2016

There are a number of
advanced features you can

set on an Attribute …

… but we’re just going
to set its type.

CS193p

Spring 2016

Let’s add another Attribute
to the TwitterUser Entity.

CS193p

Spring 2016

Similar to outlets and actions,
we can ctrl-drag to create

Relationships between Entities.

CS193p

Spring 2016

A Relationship is analogous to a

pointer to another object

(or NSSet of other objects).

CS193p

Spring 2016

From a Tweet’s perspective,

this Relationship to a TwitterUser is

the “tweeter” of the Tweet …

… so we’ll call the Relationship
“tweeter” on the Tweet side.

CS193p

Spring 2016

A TwitterUser can tweet many
Tweets, so we’ll call this Relationship

“tweets” on the TwitterUser side.

See how Xcode notes the inverse
relationship between tweets and tweeter.

CS193p

Spring 2016

We also need to note that there can
be many Tweets per TwitterUser.

CS193p

Spring 2016

The type of this Relationship in our Swift
code will be NSSet of NSManagedObject

(since it is a “to many” Relationship).

The type of this Relationship in our

Swift code will be an NSManagedObject

(or a subclass thereof).

The double arrow here means

a “to many” Relationship

(but only in this direction).

The Delete Rule says
what happens to the

pointed-to Tweets if we
delete this TwitterUser.

Nullify means “set the
tweeter pointer to nil”.

CS193p

Spring 2016

Core Data
There are lots of other things you can do

But we are going to focus on creating Entities, Attributes and Relationships.

So how do you access all of this stuff in your code?
You need an NSManagedObjectContext.
It is the hub around which all Core Data activity turns.

How do I get one?
There are two ways ...
1. Click the “Use Core Data” button when you create a project
2. Create a UIManagedDocument and ask for its managedObjectContext (a var).

CS193p

Spring 2016

Core Data
Sharing a global NSManagedObjectContext in your AppDelegate

Clicking the “Use Core Data” button when you create a project adds code to your AppDelegate.
The most important thing it adds is a managedObjectContext var.

You can access your AppDelegate’s managedObjectContext var like this …
(UIApplication.sharedApplication().delegate as! AppDelegate).managedObjectContext

If you have an existing project, create a new project and copy the AppDelegate code over.
You have to copy not just the managedObjectContext var, but all the methods it depends on.
It’s pretty obvious which those are.

CS193p

Spring 2016

UIManagedDocument
UIManagedDocument
It inherits from UIDocument which provides a lot of mechanism for the management of storage.
If you use UIManagedDocument, you’ll be on the fast-track to iCloud support.
Think of a UIManagedDocument as simply a container for your Core Data database.

Creating a UIManagedDocument
First, you need to create a URL to the file the document will be stored in.
This requires knowing a little bit of how to use the file system which we have not yet covered!
But the code goes like this …
let fm = NSFileManager.defaultManager()
if let docsDir = fm.URLsForDirectory(.DocumentDirectory, inDomains: .UserDomainMask).first {

let url = docsDir.URLByAppendingPathComponent(“MyDocumentName”)
let document = UIManagedDocument(fileURL: url)

}

This creates the UIManagedDocument instance, but does not open nor create the underlying file.

CS193p

Spring 2016

UIManagedDocument
How to open or create a UIManagedDocument

Before you use a UIManagedDocument, you have to check to see if it’s open or not.

If it is already open (in the .Normal state), you are good to go using the managedObjectContext
if document.documentState == .Normal { /* use managedObjectContext */ }
If it’s .Closed …
if document.documentState == .Closed { /* need to open/create document */ }
… you need to open (or create) it.

To do that, check to see if the UIManagedDocument’s underlying file exists on disk …
if let path = fileURL.path,

let fileExists = NSFileManager.defaultManager().fileExistsAtPath(path) { … }
… if it does exist, open the document using ...
document.openWithCompletionHandler { (success: Bool) in /* use managedObjectContext */ }
… if it does not exist, create the document using ...
document.saveToURL(document.fileURL, forSaveOperation: .ForCreating) { success in ... }

CS193p

Spring 2016

UIManagedDocument
This is all asynchronous!

Opening or creating the document might take a little time.
And we do not want to block the main thread.
However, your block does get executed back on the main thread eventually.

Other documentStates
.SavingError (success will be NO in completion handler)
.EditingDisabled (temporary situation, try again)
.InConflict (e.g., because some other device changed it via iCloud)
We don’t have time to address these (you can ignore in homework), but know that they exist.

CS193p

Spring 2016

UIManagedDocument
Saving the document
UIManagedDocuments AUTOSAVE themselves!
However, if, for some reason you wanted to manually save (asynchronously, of course) …
document.saveToURL(document.fileURL, forSaveOperation:.ForOverwriting) { success in ... }
Note that this is almost identical to creation (just .ForOverwriting is different).
This is a UIKit class and so this method must be called on the main queue.

Closing the document
Will automatically close if there are no strong pointers left to it.
But you can explicitly close with this asynchronous method …
document.closeWithCompletionHandler { success in ... }

CS193p

Spring 2016

Core Data
Okay, we have an NSManagedObjectContext, now what?

We grabbed it from an open UIManagedDocument’s managedObjectContext var.
Or we got it from our AppDelegate with code we got from creating a new Core Data project.
Now we use it to insert/delete objects in the database and query for objects in the database.

CS193p

Spring 2016

Core Data
Inserting objects into the database
let moc = aDocument.managedObjectContext // or from AppDelegate

let tweet: NSManagedObject =
NSEntityDescription.insertNewObjectForEntityForName(“Tweet”, inManagedObjectContext: moc)

Note that this NSEntityDescription class method returns an NSManagedObject instance.
All objects in the database are represented by NSManagedObjects or subclasses thereof.

An instance of NSManagedObject is a manifestation of an Entity in our Core Data Model*.
Attributes of a newly-inserted object will start out nil (unless you specify a default in Xcode).

* i.e., the Data Model that we just graphically built in Xcode!

CS193p

Spring 2016

Core Data
How to access Attributes in an NSManagedObject instance

You can access them using the following two NSKeyValueCoding protocol methods ...
func valueForKey(String) -> AnyObject?
func setValue(AnyObject?, forKey: String)
You can also use valueForKeyPath/setValue(forKeyPath:) and it will follow your Relationships!

The key is an Attribute name in your data mapping
For example, “created” or “text”.

The value is whatever is stored (or to be stored) in the database
It’ll be nil if nothing has been stored yet (unless Attribute has a default value in Xcode).
Note that all values are objects (numbers and booleans are NSNumber objects).
Binary data values are NSData objects.
Date values are NSDate objects.
“To-many” mapped relationships are NSSet objects (or NSOrderedSet if ordered).
Non-“to-many” relationships are other NSManagedObjects, of course.

CS193p

Spring 2016

Core Data
Changes (writes) only happen in memory, until you save

Remember, UIManagedDocument autosaves.
When the document is saved, the context is saved & your changes get written to the database.
Be careful during development where you press “Stop” in Xcode (sometimes autosave is pending).

You must explicitly save() if not using UIManagedDocument
let context = (UIApplication.sharedApplication as! AppDelegate).managedObjectContext
// do things with the context
context.save()
… ah, but it’s not quite that easy!
The save() method in UIManagedObjectContext can throw an error!
How do we deal with thrown errors?!

CS193p

Spring 2016

Thrown Errors
In Swift, methods can throw errors

You will always know these methods because they’ll have the keyword throws on the end.
func save() throws
You must put calls to functions like this in a do { } block and use the word try to call them.
do {

try context.save()
} catch let error {

// error will be something that implements the ErrorType protocol, e.g., NSError
// usually these are enums that have associated values to get error details
throw error // this would re-throw the error (only ok if the method we are in throws)

}

If you are certain a call will not throw, you can force try with try! …
try! context.save() // will crash your program if save() actually throws an error

CS193p

Spring 2016

Core Data
But calling valueForKey/setValue(forKey:) is pretty ugly

There’s no type-checking.
And you have a lot of literal strings in your code (e.g. “created”)

What we really want is to set/get using vars!
No problem ... we just create a subclass of NSManagedObject

The subclass will have vars for each attribute in the database.
We name our subclass the same name as the Entity it matches (not strictly required, but do it).

And, as you might imagine, we can get Xcode to generate such a subclass for us!

CS193p

Spring 2016

Select both Entities.

We’re going to have Xcode
generate NSManagedObject
subclasses for them for us.

CS193p

Spring 2016

Ask Xcode to generate
NSManagedObject
subclasses for our

Entities.

CS193p

Spring 2016

Which Data Model(s) to

generate subclasses for

(we only have one Data Model).

CS193p

Spring 2016

Which Entities to

generate subclasses for

(usually we choose all of them).

CS193p

Spring 2016

Be sure to pick Swift

here, of course!

This will make your vars be scalars

where possible.

Be careful if one of your Attributes is an NSDate,

you’ll end up with an NSTimeInterval var.

CS193p

Spring 2016

Pick which group you want your
new classes to be stored

(default is often one directory
level higher, so watch out).

CS193p

Spring 2016

Xcode has generated a subclass of

NSManagedObject for our Tweet Entity.

Inherits from NSManagedObject.

CS193p

Spring 2016

… and another one for our

TwitterUser Entity.

CS193p

Spring 2016

But what is this file it created?

CS193p

Spring 2016

It is an extension to the Tweet class.

It allows us to access all the Attributes using vars.

Note the type here!

CS193p

Spring 2016

And note this type too.

@NSManaged is some magic that lets Swift know that
the NSManagedObject superclass is going to handle

these properties in a special way

(it will basically do valueForKey/setValue(forKey:)).

CS193p

Spring 2016

Core Data
So how do I access my Entities’ Attributes with these subclasses?

// let’s create an instance of the Tweet Entity in the database …
let context = document.managedObjectContext // or from AppDelegate
if let tweet = NSEntityDescription.insertNewObjectForEntityForName(“Tweet”,

inManagedObjectContext:context) as? Tweet {
tweet.text = “140 characters of pure joy”
tweet.created = NSDate()
tweet.tweeter = ... // a TwitterUser object we created or queried to get
tweet.tweeter.name = “Joe Schmo” // yes, of course you can chain as usual

}
This is nicer than setValue(“140 characters of pure joy”, forKey: “text”)
And Swift can type-check the key.

CS193p

Spring 2016

Deletion
Deletion

Deleting objects from the database is easy (sometimes too easy!)
managedObjectContext.deleteObject(tweet)
Make sure that the rest of your objects in the database are in a sensible state after this.
Relationships will be updated for you (if you set Delete Rule for relationship attributes properly).
And don’t keep any strong pointers to tweet after you delete it!

prepareForDeletion
This is a method we can implement in our NSManagedObject subclass ...
func prepareForDeletion()
{

// we don’t need to set our tweeter to nil or anything here (that will happen automatically)
// but if TwitterUser had, for example, a “number of tweets tweeted” attribute,
// we might adjust it down by one here (e.g. tweeter.tweetCount -= 1).

}

CS193p

Spring 2016

Querying
So far you can ...

Create objects in the database: insertNewObjectForEntityForName(inManagedObjectContext:).
Get/set properties with valueForKey/setValue(forKey:) or vars in a custom subclass.
Delete objects using the NSManagedObjectContext deleteObject method.

One very important thing left to know how to do: QUERY
Basically you need to be able to retrieve objects from the database, not just create new ones.
You do this by executing an NSFetchRequest in your NSManagedObjectContext.

Four important things involved in creating an NSFetchRequest
1. Entity to fetch (required)

4. NSPredicate specifying which of those Entities to fetch (optional, default is all of them)
3. NSSortDescriptors to specify the order in which the array of fetched objects are returned
2. How many objects to fetch at a time and/or maximum to fetch (optional, default: all)

CS193p

Spring 2016

Querying
Creating an NSFetchRequest

We’ll consider each of these lines of code one by one ...
let request = NSFetchRequest(entityName: “Tweet”)
request.fetchBatchSize = 20
request.fetchLimit = 100
request.sortDescriptors = [sortDescriptor]
request.predicate = ...

Specifying the kind of Entity we want to fetch
A given fetch returns objects all of the same kind of Entity.
You can’t have a fetch that returns some Tweets and some TwitterUsers (it’s one or the other).

Setting fetch sizes/limits
If you created a fetch that would match 1000 objects, the request above faults 20 at a time.
And it would stop fetching after it had fetched 100 of the 1000.

CS193p

Spring 2016

Querying
NSSortDescriptor
When we execute a fetch request, it’s going to return an Array of NSManagedObjects.
Arrays are “ordered,” of course, so we should specify that order when we fetch.
We do that by giving the fetch request a list of “sort descriptors” that describe what to sort by.
let sortDescriptor = NSSortDescriptor(

key: “screenName”,
ascending: true,
selector: #selector(NSString.localizedStandardCompare(_:))

)

The selector: argument is just a method (conceptually) sent to each object to compare it to others.
Some of these “methods” might be smart (i.e. they can happen on the database side).
localizedStandardCompare is for ordering strings like the Finder on the Mac does (very common).

We give an Array of these NSSortDescriptors to the NSFetchRequest because sometimes
we want to sort first by one key (e.g. last name), then, within that sort, by another (e.g. first name).

Example: [lastNameSortDescriptor, firstNameSortDescriptor]

CS193p

Spring 2016

Querying
NSPredicate
This is the guts of how we specify exactly which objects we want from the database.

Predicate formats
You create them with a format string with strong semantic meaning (see NSPredicate doc).
Note that we use %@ (more like printf) rather than \(expression) to specify variable data.
let searchString = “foo”
let predicate = NSPredicate(format: “text contains[c] %@“, searchString)
let joe: TwitterUser = ... // a TwitterUser we inserted or queried from the database
let predicate = NSPredicate(format: “tweeter = %@ && created > %@”, joe, aDate)
let predicate = NSPredicate(format: “tweeter.screenName = %@“, “CS193p”)

The above would all be predicates for searches in the Tweet table only.
Here’s a predicate for an interesting search for TwitterUsers instead …
let predicate = NSPredicate(format: “tweets.text contains %@“, searchString)
This would be used to find TwitterUsers (not Tweets) who have tweets that contain the string.

CS193p

Spring 2016

Querying
NSCompoundPredicate

You can use AND and OR inside a predicate string, e.g. @“(name = %@) OR (title = %@)”
Or you can combine NSPredicate objects with special NSCompoundPredicates.
let array = [predicate1, predicate2]
let predicate = NSCompoundPredicate(andPredicateWithSubpredicates: array)
This predicate is “predicate1 AND predicate2”. OR available too, of course.

CS193p

Spring 2016

Advanced Querying
Key Value Coding

Can actually do predicates like “tweets.@count > 5” (TwitterUsers with more than 5 tweets).
@count is a function (there are others) executed in the database itself.

https://developer.apple.com/library/ios/documentation/cocoa/conceptual/KeyValueCoding/Articles/CollectionOperators.html

By the way, all this stuff (and more) works on Dictionarys, Arrays and Sets too …
e.g. propertyList.valueForKeyPath(“tweets.tweet.@avg.latitude”)

returns the average latitude of the location of all the tweets (yes, really)
e.g. “tweets.tweet.text.length" would return an Array of the lengths of the text of the tweets

NSExpression
Advanced topic. Can do sophisticated data gathering from the database.
No time to cover it now, unfortunately.

If interested, for both NSExpression and Key Value Coding queries, investigate …
let request = NSFetchRequest(“…”)
request.resultType = .DictionaryResultType // fetch returns Array of Dicts instead of NSMO’s
request.propertiesToFetch = [“name”, expression, etc.]

CS193p

Spring 2016

Querying
Putting it all together

Let’s say we want to query for all TwitterUsers ...
let request = NSFetchRequest(entityName: “TwitterUser”)
... who have created a tweet in the last 24 hours ...
let yesterday = NSDate(timeIntervalSinceNow:-24*60*60)
request.predicate = NSPredicate(format: “any tweets.created > %@”, yesterday)
... sorted by the TwitterUser’s name ...
request.sortDescriptors = [NSSortDescriptor(key: “name”, ascending: true)]

CS193p

Spring 2016

Querying
Executing the fetch
context = aDocument.managedObjectContext // or AppDelegate var
let users = try? context.executeFetchRequest(request)

Notice we are doing a different kind of try? here.
The ? means “try this and if it throws an error, just give me nil back.”
We could, of course, use a normal try inside a do { } and catch errors if we were interested.

Otherwise this fetch request executing method …
Returns an empty Array (not nil) if it succeeds and there are no matches in the database.
Returns an Array of NSManagedObjects (or subclasses thereof) if there were any matches.

That’s it. Very simple really.

CS193p

Spring 2016

Query Results
Faulting

The above fetch does not necessarily fetch any actual data.
It could be an array of “as yet unfaulted” objects, waiting for you to access their attributes.
Core Data is very smart about “faulting” the data in as it is actually accessed.
For example, if you did something like this ...
for user in twitterUsers) {

print(“fetched user \(user)”)
}
You may or may not see the names of the users in the output

(you might just see “unfaulted object”, depending on whether it prefetched them)
But if you did this ...
for user in twitterUsers) {

print(“fetched user named \(user.name)”)
}
... then you would definitely fault all these TwitterUsers in from the database.
That’s because in the second case, you actually access the NSManagedObject’s data.

CS193p

Spring 2016

Core Data Thread Safety
NSManagedObjectContext is not thread safe
Luckily, Core Data access is usually very fast, so multithreading is only rarely needed.
NSManagedObjectContexts are created using a queue-based concurrency model.
This means that you can only touch a context and its NSMO’s in the queue it was created on.
When we say “queue” here, we mean “serial queue” not the QoS-based concurrent queues.
The most common queue to use is the main queue (UIManagedDocument or AppDelegate).
You can create your own NSManagedObjectContexts on other serial queues, but that’s advanced.

Thread-Safe Access to an NSManagedObjectContext
context.performBlock { // or performBlockAndWait until it finishes

// do stuff with context (this will happen in its safe queue (the queue it was created on))
}
Note that the Q might well be the main Q, so you’re not necessarily getting “multithreaded.”
It’s generally a good idea to wrap all your calls to an NSManagedObjectContext using this.
It won’t cost anything if it’s not in a multithreaded situation.

CS193p

Spring 2016

Core Data Thread Safety
Parent Context (advanced)

Some contexts (including UIManagedDocument ones) have a parentContext (a var on NSMOC).
This parentContext will almost always be on a separate queue, but access the same database.
This means you can performBlock on it to access the database off the main queue (e.g.).
But it is still a different context, so you’ll have to refetch in the child to see any changes.

CS193p

Spring 2016

Core Data
There is so much more (that we don’t have time to talk about)!

Optimistic locking (deleteConflictsForObject)
Rolling back unsaved changes
Undo/Redo
Staleness (how long after a fetch until a refetch of an object is required?)

CS193p

Spring 2016

Core Data and UITableView
NSFetchedResultsController
Hooks an NSFetchRequest up to a UITableViewController.
Usually you’ll have an NSFetchedResultsController var in your UITableViewController.
It will be hooked up to an NSFetchRequest that returns the data you want to show.
Then use the NSFRC to answer all of your UITableViewDataSource protocol’s questions!

For example ...
var fetchedResultsController = ...
func numberOfSectionsInTableView(sender: UITableView) -> Int {

return fetchedResultsController?.sections?.count ?? 1
}
func tableView(sender: UITableView, numberOfRowsInSection section: Int) -> Int {

if let sections = fetchedResultsController?.sections where sections.count > 0 {
return sections[section].numberOfObjects

} else {
return 0

}
}

CS193p

Spring 2016

NSFetchedResultsController
Very important method ... objectAtIndexPath
NSFetchedResultsController method …
func objectAtIndexPath(indexPath: NSIndexPath) -> NSManagedObject
Here’s how you would use it in, for example, tableView(cellForRowAtIndexPath:) …
func tableView(tv: UITableView, cellForRowAtIndexPath: NSIndexPath) -> UITableViewCell
{

let cell = tv.dequeue…
if let obj = fetchedResultsController.objectAtIndexPath(indexPath) as? Tweet {

// load up the cell based on the properties of the obj
}
return cell

}

CS193p

Spring 2016

NSFetchedResultsController
How do you create an NSFetchedResultsController?

Just need the NSFetchRequest to drive it (and a NSManagedObjectContext to fetch from).
Let's say we want to show all tweets posted by someone with the name theName in our table:

let frc = NSFetchedResultsController(
 fetchRequest: request,
 managedObjectContext: context,
 sectionNameKeyPath: keyThatSaysWhichAttributeIsTheSectionName,
 cacheName: “MyTwitterQueryCache”) // careful!

let request = NSFetchRequest(entityName: “Tweet”)
request.sortDescriptors = [NSSortDescriptor(key: “created” ...)]
request.predicate = NSPredicate(format: “tweeter.name = %@”, theName)

Be sure that any cacheName you use is always associated with exactly the same request.
It’s okay to specify nil for the cacheName (no cacheing of fetch results in that case).

It is critical that the sortDescriptor matches up with the keyThatSaysWhichAttribute...
The results must sort such that all objects in the first section come first, second second, etc.

CS193p

Spring 2016

NSFetchedResultsController
NSFRC also “watches” changes in Core Data & auto-updates table

Uses a key-value observing mechanism.
When it notices a change, it sends message like this to its delegate ...
func controller(NSFetchedResultsController,

didChangeObject: AnyObject
atIndexPath: NSIndexPath?

forChangeType: NSFetchedResultsChangeType
newIndexPath: NSIndexPath?)

{

// here you are supposed call appropriate UITableView methods to update rows
// but don’t worry, we’re going to make it easy on you ...

}

CS193p

Spring 2016

CoreDataTableViewController
NSFetchedResultsController’s doc shows how to do all this
In fact, you’re supposed to copy/paste the code from the doc into your table view subclass.
But that’s all a bit of a pain and it’s not in Swift, so ...

Enter CoreDataTableViewController!
We’ve put the code from NSFetchedResultsController into a subclass of UITVC for you!

How does CoreDataTableViewController work?
It’s just a UITableViewController that adds an NSFetchedResultsController as a var.
Whenever you set it, it will immediately start using it to fill the contents of its UITableView.

Easy to use
Download it along with the Core Data demo next week.
Just subclass it and override the methods that load up cells and/or react to rows being selected

(you’ll use the NSFetchedResultsController method objectAtIndexPath mentioned earlier).
Then set the fetchedResultsController var and watch it go!

